Extensions 1→N→G→Q→1 with N=C2 and Q=C23.25D4

Direct product G=N×Q with N=C2 and Q=C23.25D4
dρLabelID
C2×C23.25D464C2xC2^3.25D4128,1641


Non-split extensions G=N.Q with N=C2 and Q=C23.25D4
extensionφ:Q→Aut NdρLabelID
C2.1(C23.25D4) = C42.42Q8central extension (φ=1)64C2.1(C2^3.25D4)128,296
C2.2(C23.25D4) = C24.132D4central extension (φ=1)64C2.2(C2^3.25D4)128,467
C2.3(C23.25D4) = C4×C4.Q8central extension (φ=1)128C2.3(C2^3.25D4)128,506
C2.4(C23.25D4) = C4×C2.D8central extension (φ=1)128C2.4(C2^3.25D4)128,507
C2.5(C23.25D4) = C42.43Q8central stem extension (φ=1)64C2.5(C2^3.25D4)128,300
C2.6(C23.25D4) = C42.Q8central stem extension (φ=1)64C2.6(C2^3.25D4)128,304
C2.7(C23.25D4) = C24.133D4central stem extension (φ=1)64C2.7(C2^3.25D4)128,539
C2.8(C23.25D4) = C23.22D8central stem extension (φ=1)64C2.8(C2^3.25D4)128,540
C2.9(C23.25D4) = C42.56Q8central stem extension (φ=1)128C2.9(C2^3.25D4)128,567
C2.10(C23.25D4) = C42.60Q8central stem extension (φ=1)128C2.10(C2^3.25D4)128,578
C2.11(C23.25D4) = C24.71D4central stem extension (φ=1)64C2.11(C2^3.25D4)128,586
C2.12(C23.25D4) = C42.31Q8central stem extension (φ=1)128C2.12(C2^3.25D4)128,681

׿
×
𝔽